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a b s t r a c t

The problem of the motion of a Chaplygin sleigh on horizontal and inclined surfaces is considered. The
possibility of representing the equations of motion in Hamiltonian form and of integration using Liou-
ville’s theorem (with a redundant algebra of integrals) is investigated. The asymptotics for the rectilinear
uniformly accelerated sliding of a sleigh along the line of steepest descent are determined in the case of
an inclined plane. The zones in the plane of the initial conditions, corresponding to a different behaviour
of the sleigh, are constructed using numerical calculations. The boundaries of these domains are of a
complex fractal nature, which enables a conclusion to be drawn concerning the probable character from
of the dynamic behaviour.

© 2009 Elsevier Ltd. All rights reserved.

1. The equations of motion

Chaplygin1 considered the motion of a rigid body supported on a plane by two posts with absolutely smooth ends and by a sharp small
wheel (a disc or a blade) such that the body cannot move perpendicular to the plane of the small wheel (a Chaplygin sleigh). We select two
systems of coordinates, a fixed Oxy system and a system O′�� which is rigidly connected with the body and has its origin O′ located at the
intersection of the straight line passing through the contact point of the small wheel Q perpendicularly to its plane and the straight line
passing through the centre of mass C parallel to the plane of the wheel (Fig. 1); a is the distance from the point O′ to the centre of mass
and b is the distance from the point O′ to the contact point of the wheel. Suppose � is the angular velocity of the body and v1 and v2 are
the projections of the velocity of the point Q′ onto the moving axes. The equation of the constraint (which expresses the condition that the
projections of the velocity of the point Q onto the O′� axis are equal to zero) then has the form

(1.1)

The equations of motion of a Chaplygin sleigh in a potential field with potential U(x,y, �)can be obtained by Hamel,s method

(1.2)

where m is the mass of the sleigh, I is its moment of inertia about the centre of mass, x and y are the coordinates of the point O′ in the fixed
system of coordinates and � is the angle of rotation of the moving axes (Fig. 1)

Equations (1.2) have the energy integral

(1.3)

Note that the parameter b does not appear in the equations of motion with this special choice of the moving axes.
We will consider special cases of system (1.2) for which additional symmetries emerge.
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Fig. 1.

2. Motion on a horizontal plane

Hamiltonian form and integrability. When there is no external field, system (1.2) possesses an invariant measure �dv1 ∧ d� ∧ d� ∧ dx ∧ dy
with a singular density � = �−1. At the same time, the equations describing the evolution of the projections of the velocity v1 and the angular
velocity � separate, and they can be represented in Hamiltonian form in a solvable two-dimensional Lie algebra

This was noted earlier2 and the analogy between the motion of a Chaplygin sleigh and the dynamics of a two-dimensional open Toda
chain has been pointed out.

It is found that system (1.2) can also be represented in Hamiltonian form for a wide choice of the variables v1, �, x, y, � such that the
following theorem, which is proved by direct verification of the equations of motion and the Jacobi identity, holds.

Theorem. If U = 0, system (1.2) can be represented in the Hamiltonian form

with Hamiltonian

and the non-linear Poisson bracket (containing the arbitrary constant �)

(2.1)

Remark 1. Although it was shown by Liouville that a system can be represented in Hamiltonian form when the number of variables is
doubled, such a representation is seldomly used in practice. This is due to the fact that the resulting Hamiltonian is degenerate with respect
to the momenta. A problem on the possibility of writing the equations of non-holonomic systems in Hamiltonian form without doubling
the number of variables while preserving the non-degeneracy of the Hamiltonian has been formulated by V. S. Novoselov, V. V. Kozlov
and J. Duistermaat. It is precisely this formulation of the problem which enables us to use the well developed technique of the analysis of
Hamiltonian systems for investigating non-holonomic systems.

When � /= 0, the rank of the Poisson structure is equal to four and the unique central function has the form

(2.2)

Moreover, there are two (non-involute) integrals which determine the trajectory of the body on the plane:

(2.3)
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where

Hence, when U = 0, system (1.2) possesses a redundant set of non-commutative integrals. When � = 0, the rank of the Poisson bracket
(2.1) is equal to two, and �x and �y become Casimir functions.

Relations (2.2) and (2.3) define an integrable mapping of scattering, in particular:

In the second special case, when a = 0, there is a standard invariant measure dv1 ∧ d� ∧ d� ∧ dx ∧ dy.
Suppose a = 0 and ∂U/∂y = 0. Then, the system which describes the evolution of the variables v1, �, x, � is reparable. On changing the

time and spatial variables in it

we obtain the equations

(2.4)

which, obviously, after a Legendre transformation, are written in Hamiltonian form.
Note that the changed time variable has singularities at the points

(2.5)

Hence, representation (2.4) only holds in an open domain of the phase space from which points satisfying Eq. (2.5) have been excluded.

Remark 2. Chaplygin represented Eqs (2.1) in canonical Hamiltonian form using quasi-coordinates. They are of the fourth order and are
convenient for using perturbation theory.3 Chaplygin used this system to illustrate the reducing factor method which he also applied to
more complex problems.4

A Chaplygin sleigh with a torque. Another case, which leads to system (1.2), is obtained if the body is balanced and moves on a horizontal
plane but has a torque (∂U/∂x = ∂U/∂y = 0,∂U/∂� /= 0). In this case, the system of three equations

which has an energy integral

is separable.
This system can be reduced to just one second-order equation for the function v1(�)

3. Motion on an inclined plane

We direct the Ox axis along the line of steepest descent, and, then,

(3.1)

where � is the angle of inclination of the plane to the horizontal.
If a = 0, the equation is trivially integrable and there are four integrals which determine the law of motion and the trajectory:

The body does not slide down but drifts in a horizontal direction while, if the body is released without an initial impetus v1(0) = 0, it
moves along a cycloid.5

The qualitative characteristics of the motion of a Chaplygin sleigh on an inclined plane have been studied3 by the method of averaging
using a canonical Hamiltonian form of the equations proposed by Chaplygin1 which contains a quasi-coordinate.
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System (1.2) with the potential (3.1) has the obvious particular solutions of the form

(3.2)

which correspond to the uniformly accelerated sliding of the sleigh along the straight line of steepest descent such that, at the same time,
the blade remains parallel to this line.

The equations of motion do not change under the substitution

We therefore, without loss of generality, put a > 0 and investigate the stability of solutions (3.2) (with respect to past of the variables) in
greater detail. We carry out a change in the time and a corresponding change in the velocities using the formulae

(3.3)

In the new time, we obtain the non-autonomous system

(3.4)

The first three equations form a closed system and the fixed points of this system ū = −	, �̄ = 0, � = 0 and ū = 	, �̄ = 0, � = 

correspond to the solutions (3.2) respectively. Linearizing system (3.4) close to them, we obtain

(3.5)

where the upper sign corresponds to the first solution and the lower sign to the second solution. The solutions of this system have the form

where A, B and C are constants of integration and erf and erfi are the real and imaginary error functions

In the linear approximation, we therefore obtain that the fixed point ū = −�, �̄ = 0, � = 0 of system (3.4) is unstable and the fixed point
ū = −	, �̄ = 0, � = � is asymptotically stable.

We will show that, in this case, Lyapunov asymptotic stability also holds. After the change of variables
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the equations of motion (3.4) can be represented in the form

The fixed point investigated has the coordinates

Suppose

We now select the Lyapunov function in the neighbourhood of the fixed point in the form of the positive-definite quadratic form

(3.6)

This function is only uniquely defined in the neighbourhood of the fixed point, since it is not 2
-periodic in � and �.
The total derivative of F with respect to � in the neighbourhood of the fixed point is represented in the form

(3.7)

where

It follows from this that there is a neighbourhood of the fixed point in which dF/d� < 0 (we recall that, to be specific, we have put 	 = 0,
a > 0) and the fixed point is therefore stable by Lyapunov’s theorem. At the same time, as a consequence of the degeneracy of the function
G0, the asymptotic stability requires a more detailed consideration.

We will use the method in Ref. 6. According to relations (3.6) and (3.7), there is a neighbourhood of the fixed point in which the functions
F and G1 do not have critical points apart from points which satisfy the condition R = 0 and, moreover, G1 > 0 everywhere with the exception
of points which satisfy the above-mentioned condition. Consequently, for all initial conditions (when � = �0 > 0) from this neighbourhood,
F(�) is a monotonically decreasing function and, since it is bounded from below, there is a limit F(�) → F* when � → ∞. We assume that
F* > 0. Comparing equalities (3.6) and (3.7), we conclude that, starting from a certain instant � > �∗

o > �0, the function G′
1 will be bounded

from below: G1 ≥ G∗
1 > 0. Integrating relation (3.7), we obtain

However, the last integral diverges and, consequently, the assumption that F* > 0 is untrue, that is, F* = 0. The equilibrium position is
therefore asymptotically stable.

Remark 3. The existence of a non-zero function G0 in relation (3.7) leads to the fact that, along certain directions, the trajectory tends
exponentially to the origin of the coordinates.

It has been shown3 that, in the first approximation with respect to the angle �, almost all solutions tend to solution (3.2) of the second
type. Numerical investigations show that this still holds in the case of arbitrary angles of inclination of the plane.

Hypothesis. Almost all solutions of system (1.2), (3.1) tend to solution (3.2) of the second type which corresponds to the uniformly
accelerated sliding of the sleigh along the straight line of steepest descent, during which the centre of mass is located below the of contact
point of the blade.

For a numerical analysis of the system, we will prescribe the initial conditions in the (�, �̇ = �) plane and paint it with different shades
of grey depending on the number of revolutions which the body has executed before asymptotically passing to uniform sliding along the
line of steepest descent. The greater the number of revolutions, the darker the painted in zone.

The results of the calculations for v1 = 0, a = 1, 	 = 1, m = 1.2, I = 10 are shown in Fig. 2, which demonstrates the distribution of the
zones corresponding to a different number of revolutions of the sleigh (the enlarged rectangular fragments are shown separately under
the numbers 1 and 2). It is seen that the boundaries of these domains can have a complex fractal nature, which corresponds to a complex
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Fig. 2.

structure of the basin of attraction (that is, the sets of initial conditions specifying a motion which asymptotically approaches the fixed
point of system (3.4)). This causes indeterminacy in the behaviour of the system, depending on the initial conditions. Such an arrangement
of the boundary in this problem appears to be somewhat unexpected since, in the related problem of the fall of a plate in an ideal fluid, the
structure of the attraction basins has a regular form7,8 (that is, the different zones are separated by smooth curves). At the same time the
distribution of the initial conditions in the case of the fall of a rigid body of arbitrary shape in an ideal fluid is also of a fractal nature.9
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